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ABSTRACT: This study assesses the level-2 snowfall retrieval results from 11 passive microwave radiometers generated
by the version 5 Goddard profiling algorithm (GPROF) relative to two spaceborne radars: CloudSat Cloud Profiling Radar
(CPR) and Global Precipitation Measurement (GPM) Ku-band Precipitation Radar (KuPR). These 11 radiometers in-
clude six conical scanning radiometers [Advanced Microwave Scanning Radiometer for the Earth Observing System
(AMSR-E), its successor sensor AMSR2, GPM Microwave Imager (GMI), and three Special Sensor Microwave Imager/
Sounders (SSMIS)] and five cross-track scanning radiometers [Advanced Technology Microwave Sounder (ATMS) and
four Microwave Humidity Sounders (MHS)]. Results show that over ocean conical scanning radiometers have better detec-
tion and intensity estimation skills than cross-track sensors, likely due to the availability and usage of the low-frequency
channels (e.g., 19 and 37 GHz). Over land, AMSR-E and AMSR2 have noticeably worse performance than other sensors,
primarily due to the lack of higher than 89-GHz channels (e.g., 150, 166, and 183 GHz). Over both land and ocean, all 11
sensors severely underestimate the snowfall intensity, which propagates to the widely used level 3 precipitation product
[i.e., Integrated Multi-satelliteE Retrievals for GPM (IMERG)]. These conclusions hold regardless of using either KuPR
or CPR as the reference, though the statistical metrics vary quantitatively. The conclusions drawn from these comparisons
apply solely to the GPROF version 5 algorithm.
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1. Introduction

Snowfall accounts for a significant fraction of precipitation oc-
currence in the middle and high latitudes (Mugnai et al. 2007;
Liu 2008b; Kulie and Bennartz 2009; Behrangi et al. 2014;
Skofronick-Jackson et al. 2018). Satellite remote sensing provides
the only means for snowfall detection and snowfall intensity esti-
mation on the global scale, especially over ocean where traditional
gauge and ground radar observations are almost nonexistent.

Passive microwave radiometers on board multiple satellite
platforms form the basis of generating the global snowfall
map (Kubota et al. 2007; Huffman et al. 2015; Xie et al. 2017).
Many challenging obstacles exist for snowfall detection and
intensity estimation via passive microwave radiometers, in-
cluding highly variable land surface emissivities, especially
over the snow-covered surfaces (Mätzler 1994; Prigent et al.
2006; Noh et al. 2009; Foster et al. 2012; Takbiri et al. 2021),

conflicting brightness temperature (TB) depression signature
due to the ice particle scattering effect (Skofronick-Jackson
and Johnson 2011; Munchak and Skofronick-Jackson 2013;
You and Liu 2012; You et al. 2015) and the TB increase signa-
ture due to the supercooled liquid water emission (Kulie et al.
2010; Löhnert et al. 2011; Xie et al. 2012; Liu and Seo 2013;
Wang et al. 2013; Panegrossi et al. 2017; Mroz et al. 2021), and
complex radiative properties from the nonspherical ice par-
ticles and snowflakes shape (Liu 2008a; Petty and Huang
2010; Kuo et al. 2016; Eriksson et al. 2018).

Despite these challenges, radiative transfer model simula-
tion experiments confirmed that the high-frequency chan-
nels contain snowfall detection information (Bennartz and
Petty 2001; Michele and Bauer 2006; Skofronick-Jackson
et al. 2004, 2013) and many previous studies demonstrated
that passive microwave radiometers have the capability of
detecting snowfall. For example, several snowfall detection
algorithms have been developed by primarily relying on the
TB depression at high-frequency channels (e.g., 183.3 GHz)
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(Staelin and Chen 2000; Chen and Staelin 2003; Kongoli et al.
2003; Noh et al. 2009; Levizzani et al. 2011). Other sensors with
high-frequency channels available have also been used for snow-
fall detection, including Microwave Humidity Sounder (MHS)
(Liu and Seo 2013; Kongoli et al. 2015; Adhikari et al. 2020), Ad-
vanced Technology Microwave Sounder (ATMS) (Kongoli et al.
2018; You et al. 2016, 2022), Special Sensor Microwave Imager/
Sounder (SSMIS) (You et al. 2015), and Global Precipitation
Measurement (GPM) Microwave Imager (GMI) (Kummerow
et al. 2015; Rysman et al. 2018). A sensitivity study by You et al.
(2017) showed that the high-frequency channels are indispens-
able for snowfall detection over land.

Retrieval algorithms have also been developed for snowfall
intensity estimation (i.e., snowfall rate) via passive microwave
observations for several sensors. Noh et al. (2006) developed
a snowfall retrieval algorithm by using the airborne and
ground radar snowfall rates and AMSU-B TB observations
over Japan. They noticed better snowfall retrieval perfor-
mance for dry and heavy snowfall events compared with wet
and light snowfall events. Noh et al. (2009) applied a similar
retrieval framework over the U. S. Great Lakes region. Re-
sults showed that the retrieved snowfall rate agree well with
the ground radar observations when there was little snow ac-
cumulation on the ground. Snowfall retrieval algorithms have
been developed for SSMIS (You et al. 2015) and ATMS (You
et al. 2016) using ground radar estimates over the contiguous
United States (CONUS) as the reference. It is found that the
snowfall database constructed over CONUS using ground ra-
dar snowfall rates as the reference cannot be easily adapted to
other regions (e.g., Tibetan Plateau and polar regions) due to
the different environmental background. The Goddard profil-
ing algorithm (GPROF) version 5 has been applied to all the
passive microwave sensors in the GPM radiometer constella-
tion (Kummerow et al. 2015). Noticeable differences were
found among different sensors over the snowfall-covered land
region primarily due to the availability of high-frequency
channels. Meng et al. (2017) developed a 1D variational
(1DVAR) snowfall retrieval algorithm over land for five pas-
sive microwave radiometers, including AMSU/MHS on board
MetOp-A, MetOp-B, NOAA-18, and NOAA-19 satellites and
ATMS on board the Suomi-NPP satellite. Snowfall rates re-
trieved by the 1DVAR method agree well with ground radar
snowfall estimates over CONUS with a correlation at ;0.5.
Rysman et al. (2018, 2019) presented the snow retrieval algo-
rithm for GMI (SLALOM) retrieval framework using coinci-
dent observations between CloudSat Cloud Profiling Radar
(CPR) andGPMGMI. It is found that SLALOM retrieval results
can capture the major snowfall bands in the Southern Ocean, and
heavy snowfall events along the storm track in the Northern
Hemisphere (e.g., coastal regions of North America and Green-
land, Labrador Sea, western Siberia). Tang et al. (2018) concluded
that the optimal snowfall retrieval performance is achieved by
combining information from microwave and infrared (IR) obser-
vations and global model variables (e.g., total precipitable water).

Validation of these level-2 (i.e., swath) snowfall retrieval
results is often limited to case studies (Liu and Seo 2013;
Skofronick-Jackson et al. 2004; Kummerow et al. 2015;
von Lerber et al. 2018; Milani et al. 2021) or over the regional

scales (You et al. 2015, 2016; Meng et al. 2017; Kulie et al.
2021; Mroz et al. 2021) due to the lack of reliable ground
references on the global scale. A recent study by Mroz et al.
(2021) showed that the snowfall retrievals for GMI from
GPROF greatly underestimate snowfall rates (by a factor of
2) compared to snowfall rates from ground radar network
over CONUS. In addition, Mroz et al. (2021) also found that
the probability of detection (POD) for GMI fromGPROF varies
from 0.1 to 0.34 over CONUS, and about 0.16 over the adjacent
ocean surfaces, by using the ground radar network over CONUS.
On the other hand, the POD values from SLALOM are about
0.6 over CONUS and the adjacent ocean surfaces because
SLALOM used CPR snowfall estimate to build a prior database.

Similarly, snowfall validation studies for the level-3
(gridded) merged product is also limited to cases studies and
over regional scales. Wen et al. (2016) noticed severe underes-
timation from Integrated Multi-satellitE Retrievals for GPM
(IMERG) snowfall rates relative to the snowpack telemetry
(SNOTEL) daily snowfall datasets over the western United
States. The large underestimation from IMERG snowfall
rates was also noticed over the California Sierra Nevada re-
gion by Behrangi et al. (2018) and Sadeghi et al. (2019). In
contrast, Tang et al. (2020) showed that IMERG snowfall
rates agree reasonably well with the ground gauge observa-
tions over mainland China, especially over the Tibetan Pla-
teau region. Snowfall retrieval performance validation over
ocean is even more limited due to the near-complete lack of
reference datasets. Recently, Song et al. (2020) showed that
large underestimation exists in the IMERG snowfall estimates
relative to field campaign measurements over Arctic sea ice.

The objective of this study is to assess the snowfall retrieval
results generated by version 5 GPROF for 11 passive micro-
wave sensors in the GPM radiometer constellation over both
land and ocean. To overcome the spatial coverage issues for
validation from traditional gauge and ground radar observations,
we use two spaceborne radars as the references: CloudSat
CPR and GPM Ku-band Precipitation Radar (KuPR). CPR
snowfall estimates have been widely regarded as the most
reliable snowfall product available on the global scale
(Kulie and Bennartz 2009; Kulie et al. 2016; Rysman et al.
2019) and are often used to construct the snowfall retrieval
database for passive microwave radiometers (Liu and Seo
2013; Tang et al. 2018; Kummerow et al. 2015; You et al. 2021,
2022). The snowfall estimation performance from CPR has
been validated by many previous studies. Chen et al. (2016)
showed that CPR can detect about 70% of the snowfall event
relative to the ground radar network over CONUS. Similarly,
Mroz et al. (2021) concluded that CPR performs the best
among several snowfall remote sensing instruments for snow
detection with a skill score of 0.75 relative to the ground radar
network over CONUS. Norin et al. (2015) showed that the de-
tection skill score from CPR varies from 0.5 to 0.8 when com-
paring with ground-based weather radar network over Sweden.

Although CPR snowfall rate estimation is of high quality,
CPR offer limited spatial coverage due to the nadir-view-only
sampling strategy. To mitigate this challenge and further cor-
roborate the evaluation results from CPR snowfall product,
this study considers GPM KuPR snowfall rates. KuPR has
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very limited capability to detect the light snowfall events (Casella
et al. 2017; Panegrossi et al. 2017; You et al. 2021). Specifically,
Casella et al. (2017) showed that KuPR can only detect about 7%
of snowfall occurrence and about 30% of snowfall amount, rela-
tive to CPR observations. Using the ground radar network over
CONUS, Mroz et al. (2021) showed that KuPR is able to detect
about 31% of the snowfall events. However, KuPR has a much
wider spatial coverage (;245 km from KuPR versus;2 km from
CPR) and is currently operational. Similar strategies (i.e., using
spaceborne radar as the reference) have also been used to
evaluation the rainfall retrieval performance for multiple sen-
sors (Lin and Hou 2008; You et al. 2020).

Although we take CPR and KuPR as the references to as-
sess the snowfall retrieval performance of these passive mi-
crowave radiometers, neither of the spaceborne radars is
perfect for snowfall measurement. For example, spaceborne
radars provide the snowfall estimates near the surface, which
is defined as the surface closest to the ground without ground
clutter. Specifically, CloudSat defines the near-surface bin
height as the sixth (fifth) range gate above land (ocean) surfa-
ces or about 1.44 (1.2) km above ground (sea) level. On the
other hand, KuPR is a scanning radar with the near-surface
bin ranging from;1 km (nadir and near-nadir scans) to;2.5 km
(furthest off-nadir scans) above ground/sea level. Therefore, both
spaceborne radars may miss the shallow snowfall systems below
the near surface height.

2. Data

a. CPR and KuPR snowfall rate products

This study uses snowfall rates estimated from CloudSat CPR
and GPM KuPR as the references. CPR is a 94-GHz nadir-
looking radar with a footprint size of 1.4 km3 1.8 km (Stephens
and Kummerow 2007). We obtain the surface snowfall rate from
the V05 (latest version) 2C-SNOW-PROFILE product. KuPR
is a cross-track scanning radar on board the GPMCore Observa-
tory with a nadir resolution of about 5.2 km and swath width of
;245 km. We obtain the variable “precipRateNearSurface”
from the V06 (latest version at the time of writing this manu-
script) 2A-DPR product for KuPR.

Precipitation phase parameter (i.e., rainfall, snowfall, and
mixed) in the KuPR product is determined at the near-surface
bin height (;1.5 km above the surface), which is the height clos-
est to the ground without the ground clutter. Previous studies
showed that snowfall occurrence is greatly overestimated by using
the phase determination directly fromKuPR (Skofronick-Jackson
et al. 2019; You et al. 2021) because precipitation phase may
change from solid to liquid when falling from the near-surface
height (;1.5 km) to the ground. For this reason, we use the pre-
cipitation phase determination method from Sims and Liu (2015).
Several separation schemes were developed by Sims and Liu
(2015) requiring different input variables (e.g., 2-m air tempera-
ture, 2-m wet bulb temperature, pressure, etc.) This study uses
the 2-m wet-bulb temperature from Modern-Era Retrospective
Analysis for Research and Applications, version 2 (MERRA-2;
Gelaro et al. 2017) as the input variable over both land and ocean.
To largely exclude the possible mixed phase precipitation, we

only select the KuPR pixels with the snowfall probability greater
than 90%. To be consistent with KuPR phase determination, we
also apply the same threshold value (i.e., snowfall probability
greater than 90%) for the CPR snowfall product.

b. GPROF snowfall estimates from 11 radiometers

This study uses the precipitation estimates from 11 passive
microwave sensors, including AMSR-E on board the Aqua
satellite; AMSR2 on board the GCOM-W1 satellite; GMI on
board the GPM Core Observatory satellite; SSMIS on board
F16, F17, and F18 satellites; ATMS on board the Suomi-NPP
satellite; MHS on board MetOp-A, MetOp-B, NOAA-18, and
NOAA-19 satellites. For simplicity and convenience, these
sensors are referred to as AMSR-E, AMSR2, GMI, SSMIS-
F16, SSMIS-F17, SSMIS-F18, ATMS, MHS-MA, MHS-MB,
MHS-N18, and MHS-N19. From now on, we use these abbre-
viations to represent either the sensors themselves or the
GPROF retrieved precipitation rates from these sensors, de-
pending on the context of discussion. In the precipitation
community, these 11 sensors are commonly grouped into two
categories: conical scanning and cross-track scanning sensors.
Cross-track scanning radiometer is the sensor with varying
footprint size across the scan line, including ATMS and MHS.
In contrast, the footprint size remains unchanged across the scan
line for the conical scanning radiometer, including AMSR-E,
AMSR2, GMI, and SSMIS. Some of the diurnal cycle differences
among these sensors may be difficult to capture through the
direct comparison approach presented in this study.

Precipitation rates for all 11 sensors are generated by ver-
sion 5 GPROF (Kummerow et al. 2015). GPROF uses the
Bayesian framework to estimate the precipitation rate based
on the observed microwave brightness temperatures from the
passive sensors. Specifically, GPROF builds the retrieval data-
base primarily using GMI brightness temperatures and KuPR
rain rates (filling in with ground radar precipitation estimates
over snow-covered surfaces) to constrain the precipitation
vertical profile. To further constrain the solution, GPROF
stores the a priori information into so-called databases, sub-
setted by surface type and environmental conditions (e.g., to-
tal precipitable water and 2-m temperature). For each
satellite pixel, GPROF provides both the precipitation rate
and an estimate of the frozen precipitation rate as a linear
product of the precipitation rate and an estimated snowfall
probability (Sims and Liu 2015). This study chooses to use the
precipitation rate as the “snowfall rate” whenever the snow-
fall probability is greater than 0.90, effectively limiting the
evaluation analyses to snowfall cases.

GPROF retrieves precipitation over 14 surface types, includ-
ing ocean, sea ice, five vegetation types, four snow-covered
types, standing water, water–land boundary (coast), and water–
sea ice boundary. This study combines vegetation and snow-
covered surface types into the single “land” type. We only assess
GPROF snowfall retrieval performance over ocean and land
surface types since there are limited snowfall samples over other
surface types (except over sea ice). Over sea ice, we examined
the GPROF snowfall retrieval results but do not show them in
the current study primarily due to the relatively poor retrieval
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performance of the current GPROF version (version 5). In addi-
tion, there are limited sea ice samples over the region covered
by GMI in the Northern Hemisphere.

For different sensors, GPROF uses different channel sets
for snowfall retrieval. The channel set used over land and
ocean also differs. Specifically, for conical scanning sensors,
all available channels from 10 to 183 GHz are utilized over
land, while only channels from 10 to 89 GHz when available
are used over ocean. For cross-track radiometers, only the
high-frequency channels (from 89 to 183 GHz) from ATMS
and MHS are used, with 89 GHz being considered the most
important channel in the snowfall rate estimation process. As
shown later, these channel selection schemes have important
implications for the retrieval performance. The channel sets
used for precipitation retrieval from each sensor can be found
in Table 1 of You et al. (2020).

c. Temporal and spatial coverage

We use the full CPR snowfall product record from June
2006 to July 2019 over the CloudSat covered region of;828S–
828N. It is noted that CloudSat satellite is in day-only opera-
tion mode since November 2011, which has little influence on
the evaluation results in this study (Milani and Wood 2021).
We obtain the coincident observations between CPR and all

passive microwave sensors when a pair pixel from CPR and
each sensor is no more than 10 km apart and no more than
10 min away from each other. To increase the sample size be-
tween CPR and SSMIS, coincident observations between
SSMIS on board three satellites (i.e., F16, F17, and F18) and
CPR are combined (discussed in section 4). Similarly, coinci-
dent observations from four MHSs (i.e., MetOp-A, MetOp-B,
NOAA-18, and NOAA-19) and CPR are combined. For ei-
ther AMSR2 or AMSR-E, there are enough coincident sam-
ples with CPR because of the close orbit formation between
CloudSat and GCOM-W1, and between CloudSat and Aqua.
Therefore, the coincident observations for AMSR-E and
AMSR2 are not combined.

We use the GPM KuPR snowfall product from March 2014
to December 2020 over the latitude band observed by GPM
(;658S–658N) to obtain the coincident observations between
KuPR and all passive microwave sensors except for AMSR-
E, which stopped functioning in October 2011 and therefore
has no overlap observation period with KuPR. The threshold
values for the coincident observations between KuPR and
each sensor are set at 5 km apart and 5 min away from each
other. These threshold values for CPR and KuPR are chosen
by considering the trade-off between the sample size and the
robustness of the evaluation results.

FIG. 1. Coincident observation count between CloudSat CPR and each passive microwave sensor, including (a) AMSR-E; (b) AMSR2;
(c) three SSMISs on board F16, F17, and F18 satellites; (d) GMI; (e) four MHSs on boardMetOp-A,MetOp-B, NOAA-18, and NOAA-19;
and (f) ATMS in 2.58 grid boxes. CPR data are from June 2006 to July 2019 and the coincident matchups are obtained when passive micro-
wave data are available in the same period. Only the matchups associated with possible snowfall [i.e., snowfall probability greater than
90% based on Sims and Liu (2015)] are shown.
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3. Methodology

a. Collocation scheme

GPROF retrieved snowfall rates for AMSR-E/AMSR2,
SSMIS and GMI are provided at their ;19-GHz channel

resolutions, which are approximately 21, 59, and 15 km, re-
spectively. For MHS and ATMS, the nominal resolution for
the retrieved surface precipitation rate is ;16 km at nadir.
GPROF does not produce retrieval results for several pixels
near the edges of each scan line for ATMS and MHS, which

FIG. 2. Coincident observation count between GPM KuPR and each passive microwave sensor, including (a) AMSR2, (b) SSMIS-F16,
(c) SSMIS-F17, (d) SSMIS-F18, (e) ATMS, (f) MHS-MA, (g) MHS-MB, (h) MHS-N18, (i) MHS-N19, and (j) GMI in 2.58 grid boxes. The
number is scaled by 100 in each plot except for in (j) where the number is scaled by 10000 (note that GMI and KuPR are on the same sat-
ellite platform, i.e., GPM Core Observatory). The data are from March 2014 (just after the launch of the GPM satellite) to
December 2020 except for MHS-N18, which ends in October 2018 when NOAA-18 stopped functioning. Only the matchups associated
with possible snowfall [i.e., snowfall probability greater than 90% based on Sims and Liu (2015)] are shown.
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mitigates the negative impact of the large footprint size at the
edge of the scan line.

For retrieval results from the radiometers, we use their native
retrieval resolutions. As mentioned previously, the retrieval res-
olutions from all sensors are close to 15-km nominal resolution,
except that from SSMIS (59 km). This study takes 15 km as the
nominal resolution. To match KuPR and CPR spatial resolution
to that of SSMIS, full-resolution KuPR and CPR must be aver-
aged over several pixels. The snowfall rate from KuPR has a
spatial resolution of ;5 km. We simply average 3 3 3 KuPR
pixels to achieve 15 km 3 15 km resolution. Specifically, we
take the arithmetic mean of the precipitation rates from KuPR
every three pixels in both the cross and along scan line direc-
tions. Since CPR provides the nadir only observation with a spa-
tial resolution of ;1.7 km, we simply average 9 (15/1.7 5 9)
pixels along the scan line to mitigate the clear resolution discrep-
ancy between CPR and GPROF retrieval results’ spatial resolu-
tion. Our previous studies showed that the statistical values (e.g.,
correlation) will change when different nominal resolution is
used, however, the retrieval performance’s relative ranking from
passive microwave radiometers remains (You et al. 2020).

b. Snowfall detection evaluation metrics

To assess the snowfall detection performance, we compute
four numbers in a 2 3 2 contingency table (hit, miss, false
alarm, and correct negative; Wilks 2011). These four numbers
are referred to, in order, a, b, c, and d. In the following

definitions regarding the detection evaluation metrics, we
take the coincident observations from CPR and AMSR-E as
an example. This definition is equally applicable to the other
sensors and when KuPR is taken as the reference.

A hit is defined as both the reference (CPR) and the AMSR-E
retrieval detecting snowfall. A false alarm is when the AMSR-E
detects snowfall while CPR does not, while a miss is when CPR
detects snowfall but AMSR-E does not. A correct negative is
when both CPR and AMSR-E detect no snowfall.

This study uses 0.2 mm h21 as the snow/nonsnow threshold
value because 1) previous study showed that passive micro-
wave radiometers’ detection limitation is around 0.2 mm h21

(Munchak and Skofronick-Jackson 2013) and 2) GPROF re-
trieval results below 0.2 mm h21 are poor. In fact, it is noticed
that GPROF retrieval algorithm generates many light snowfall
rate values around 0.1 mm h21 corresponding to CPR snowfall
rates from 0.05 to 1 mm h21. This feature may indicate that
snowfall rate lighter than 0.2 mm h21 is beyond the passive mi-
crowave radiometers’ detection limitation in the GPROF re-
trieval framework. We also calculate the detection statistics
using other threshold values (e.g., 0.1 mm h21), but the rank
of these passive microwave radiometers does not change with
different threshold values (not shown).

This study computes the detection accuracy metrics derived
from the aforementioned four numbers, including probability
of detection (POD), false alarm rate (FAR), and Heidke skill
score (HSS). These metrics are calculated as follows:

0 5 10 15 20
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FIG. 3. (a) Probability of detection (POD), (b) false alarm rate (FAR), and (c) Heidke skill score (HSS) over ocean for AMSR2;
AMSR-E; three SSMISs on board F16, F17, and F18 satellites; GMI; four MHSs on board MetOp-A, MetOp-B, NOAA-18, and
NOAA-19; and ATMS over ocean based on CPR from June 2006 to July 2019. (d)–(f) As in (a)–(c), but over land. Note that the FAR
[in (b) and (e)] and HSS [in (c) and (f)] values over land and ocean have different x-axis scales.
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POD 5
a

a 1 c
,

FAR 5
b

b 1 d
,

HSS 5
2(ad 2 bc)

(a 1 c)(c 1 d) 1 (a 1 b)(b 1 d) : (1)

A large POD value is often associated with a large FAR value,
which makes it difficult to assess detection performance using
POD or FAR alone. This study uses the HSS (varying from 21
to11) value to judge the overall detection performance. HSS is a
generalized skill score that quantifies how well AMSR-E detects
precipitation compared to random chance. An HSS value greater
than zero indicates a performance better than random chance.

c. Snowfall intensity evaluation metrics

Similar to the detection evaluation metrics definition, we
take the coincident observations from CPR and AMSR-E as
an example, and the definition is equally applicable to the
other sensors and when KuPR is taken as the reference.
When both CPR and AMSR-E detect snowfall, we also com-
pute the correlation coefficient between CPR and AMSR-E.

To further evaluate the snowfall intensity, we compute the nor-
malized bias (nBIAS) and normalized root-mean-square-error
(nRMSE) in different CPR snowfall intensity bins (Lin and Hou
2008; Tang et al. 2014; You et al. 2020). Without binning the snow-
fall intensity, these two metrics are weighed toward the most fre-
quently light-snowfall pixels when computing these statistical

measures (Conner and Petty 1998; Lin and Hou 2008). In each in-
tensity bin (e.g., 0.2–0.5 mm h21), these twometrics are computed:

nBIAS 5

1
n
∑
n

i51
(yi 2 xi)
x

,

nRMSE 5

�������������������
1
n
∑
n

i51
(yi 2 xi)2

√

x
, (2)

where xi and yi are the CPR snowfall rate and AMSR-E
snowfall rate, respectively. The x and n represents the mean
CPR snowfall rate and sample size in that particular bin. Both
the zero and nonzero snowfall rates from the coincident
AMSR-E precipitation rates are included.

4. Results

a. Geospatial distribution of the coincident observations

The geospatial distribution of the coincident observations
between passive microwave sensors and CPR varies greatly
due to the different orbit formations (Yang et al. 2016).
Because CloudSat satellite with CPR on board and Aqua sat-
ellite with AMSR-E on board are both in the A-Train constel-
lation and only several minutes (mainly about 1 min) apart
from each other, there are many more coincident matchups
between CPR and AMSR-E (cf. Fig. 1a and other subplots in
Fig. 1). Due to the close orbit formation of CloudSat with
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FIG. 4. (a) POD, (b) FAR, and (c) HSS over ocean for GMI, AMSR2, SSMIS-F16, SSMIS-F17, SSMIS-F18, ATMS, MHS-MA, MHS-MB,
MHS-N18, and MHS-N19 based on GPM KuPR from March 2014 to December 2020, except MHS-N18 ends in October 2018. (d)–(f) As in
(a)–(c), but over land. Note that the FAR [in (b) and (e)] and HSS [in (c) and (f)] values over land and ocean have different x-axis scales.
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GCOM-W1, NOAA-18, and NOAA-19, the geospatial distri-
bution of the coincident observations between CPR and
AMSR2, and between CPR and MHSs are similar to that
from AMSR-E, although the sample sizes are smaller (cf.
Figs. 1a,b, cf. Figs. 1a,e). In contrast, the coincident observa-
tions from other three sensors are restricted to smaller geo-
spatial region and with noticeably less samples. Especially,
the coincident matchup from SSMISs and CPR are mostly lo-
cated poleward of 708S/N. The different geospatial coverage
from these coincident observations can affect the comparison
results (more discussion later).

Different from the geospatial distribution from CPR (Fig. 1),
the geospatial coverage of coincident observations from KuPR
and each passive microwave sensor is similar among these
matchups (Fig. 2), although the sample size differs greatly.
Analysis in section 4 shows that the sample size variation
among these sensors does not change the sensor performance
rank. In addition, the similar geospatial coverage of the match-
ups of different sensors with KuPR produces a more stable
comparison than the matchups with CPR.

b. Snowfall detection performance

Snowfall detection performance assessed against CPR re-
veals that the overall detection skills over ocean are weak for
all the passive microwave sensors. Figure 3a shows that POD
values from all the sensors are lower than 12%, and the FAR
values are similar (cf. Figs. 3a,b). That is, over ocean the cor-
rectly detected snowfall pixel numbers (i.e., snowfall indeed
occurs according to the reference) and the falsely detected
snowfall pixel numbers (i.e., no snowfall occurs according to
the reference) are similar. Therefore, the overall HSS skill
scores are very low for all sensors. More specifically, the HSS
values for cross-track scanning radiometers (MHSs and
ATMS) are slightly negative (overall detection skills are less
than the random chance) and slightly positive for conical
scanning radiometers (better than random chance skill). The

slightly higher HSS value from GMI than those from other
conical scanning sensors (AMSR-E, AMSR2, and SSMISs)
arises because matchups from GMI and CPR are only avail-
able in the latitude band 658S/N. When AMSR2 and AMSR-E
matchups are restricted to this smaller zone (i.e., the GPM
covered region), the HSS values from AMSR2/AMSR-E are
very close to the GMI HSS.

As mentioned previously, only high-frequency channels
(89–183 GHz) fromMHSs are available for snowfall detection
over ocean. To be consistent, only the high-frequency chan-
nels from ATMS are used, even though the low-frequency
channels (e.g., 23–31 GHz) are available from ATMS. For
conical scanning radiometers (GMI, AMSR-E, AMSR2, and
SSMISs), channels from 10 (when available) to 89 GHz
are used. Comparing the detection performance from conical
scanning radiometers and cross-track scanning radiometers (e.g.,
AMSR2 versus ATMS), it is concluded that the low-frequency
channels contain additional information for snowfall detection.
Therefore, it is suggested that the low-frequency channels
from ATMS should be used. Also, the same satellite platforms
that carry MHS sensors also carry AMSU-A, with low-
frequency channels. It is suggested that the low-frequency
channels from AMSU-A should be paired with MHS to en-
hance the snowfall detection performance. In addition, we also
analyzed the snowfall detection performance by using the
pixels near the nadir scans from ATMS and MHS, which
have comparable resolution with SSMIS, and more impor-
tantly, whose corresponding atmospheric columns coincide
with that of the reference radar. The HSS values remain
smaller than those from conical scanning radiometers, indi-
cating that the varying footprint size from cross-track scan-
ning radiometers is not the primary reason why cross-track
scanning radiometers have a worse performance than coni-
cal scanning radiometers.

Over land, sensors with higher-frequency channels (e.g.,
150, 166, and 183 GHz) including GMI, SSMISs, MHSs, and
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FIG. 5. (a) Correlation between coincident snowfall rate observations from CPR and from each sensor over ocean
from March 2014 to July 2019. (b) As in (a), but over land.
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ATMS have POD values at about 14% (Fig. 3d), while POD
values from AMSR-E and AMSR2 with highest frequency up
to 89 GHz are only about 7% (Fig. 3d). At the same time, all
sensors have a FAR value at about 1% (Fig. 3e), giving the
overall detection skills from SSMISs, GMI, MHSs, and
ATMS that are higher than those from AMSR2 and AMSR-E
(Fig. 3f). Also, Fig. 3f shows that the HSS value from SSMISs

is noticeably smaller than those from GMI, MHSs, and
ATMS, which arises because the coincident observations
from SSMISs and CPR are located at 708S/N poleward.
When the matchups from ATMS and MHSs are restricted
to poleward of 708S/N, the HSS values are almost identical
to that from SSMISs, indicating the importance of geospa-
tial distribution.
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FIG. 6. Scatterplots between coincident CPR snowfall rates and snowfall rates from passive microwave sensors over
ocean for March 2014–July 2019: (a) AMSR-E; (b) AMSR2; (c) GMI; (d) three SSMISs on board DMSP F16, F17,
and F18; (e) GMI; (f) four MHSs on boardMetOp-A,MetOp-B, NOAA-18, and NOAA-19; and (g) ATMS.
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The conclusions using GPM KuPR for the snowfall detec-
tion evaluation are highly consistent with those from CPR
over both land and ocean. That is, over ocean HSS values for
all cross-track scanning radiometers (ATMS and four MHSs)
are slightly negative while conical scanning radiometers
(GMI, SSMISs, and AMSR2) have small positive HSS values
(Fig. 4c). Notice that the HSS values from AMSR2 and GMI
are smaller than those from SSMISs over ocean. The most
likely reason may be the finer footprint size of AMSR2 and
GMI, making them prone to false detection of more snowfall
events (i.e., larger FAR, Fig. 4b). Over land, AMSR2 has no-
ticeably smaller POD (Fig. 4d) and HSS (Fig. 4f) values be-
cause higher-frequency channels (e.g., 150 and 183 GHz) are
not available from AMSR2.

c. Snowfall intensity performance

The snowfall intensity analysis (which only considers
matchups with snowfall rate $ 0.2 mm h21) relative to CPR
shows that conical scanning radiometers have greater correla-
tion with CPR snowfall rates than cross-track scanning radio-
meters over ocean (Fig. 5a). GPROF uses all channels from
89 to 183 GHz from MHS and ATMS snowfall intensity esti-
mation, although the weight in the Bayesian retrieval frame-
work for 89 GHz is much larger than those for other
channels, meaning that the retrieval heavily relies on

information from the 89-GHz channel. In contrast, all chan-
nels from ;10 GHz (when available) to 89 GHz are used in
the snowfall intensity estimation process for conical scanning ra-
diometers, with more weights being assigned to low-frequency
channels (10, 19, and 37 GHz). The usage of the low-frequency
channels is responsible for the better correlation from conical
scanning radiometers. Additionally, GMI has a smaller correla-
tion compared to SSMISs, AMSR-E, and AMSR2. This is
caused by the geospatial distribution of the coincident observa-
tions between GMI and CPR, which are mostly from the South-
ern Ocean (Fig. 1d). Therefore, these matchups miss heavy
snowfall events over the storm tracks in the Northern Hemi-
sphere (e.g., coastal regions of North America and Greenland,
and the Labrador Sea).

The scatter density plot corroborates the better perfor-
mance from conical scanning radiometers (Fig. 6). For exam-
ple, cross-track scanning radiometers underestimate the
snowfall rates to a larger degree when CPR snowfall rates are
greater than 1 mm h21 (cf. Fig. 6b for AMSR2 and Fig. 6e for
MHSs). The larger underestimates from cross-track scanning
radiometer are more evident in Fig. 7a for snowfall rate
greater than 1 mm h21 (red and purple curves). Clearly, the
sample size for GMI matchups with CPR is limited, shown in
Fig. 6c. In fact, only several GMI snowfall rates are greater
than 1 mm h21 in the matchup dataset, which greatly reduces
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FIG. 7. (a) Normalized biases as a function of the CPR snowfall intensity over ocean for the period
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the correlation between CPR and GMI. This is the reason
why GMI has smaller correlation compared with SSMISs,
AMSR-E, and AMSR2 (Fig. 5a). The RMSE from each senor
is similar over ocean, shown in Fig. 7b.

Over land, AMSR-E and AMSR2 have smaller correlation
with CPR than the sensors with higher-frequency channels
available (e.g., 150, 166, and 183 GHz), including GMI,
MHSs, SSMISs, and ATMS (Fig. 5b). This result is not sur-
prising since these higher-frequency channels are essential for

snowfall retrieval over land, which are more sensitive to ice
particle scattering than other channels (e.g., 19, 37, and
89 GHz) and less affected by the underlying surface proper-
ties (Grody 1991; Skofronick-Jackson and Johnson 2011;
Kummerow et al. 2015; You et al. 2015). The better correla-
tion performance is also evident from the scatterplot (Fig. 8).
The slightly smaller correlation from SSMISs than GMI,
MHSs, and ATMS is due to matchups being limited to pole-
ward of 708S/N. When MHSs and ATMS are restricted to the
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FIG. 8. As in Fig. 6, but for land.
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same regions, the correlations from these three types of sen-
sors (i.e., SSMIS, MHS, and ATMS) are almost identical. The
larger underestimation from AMSR-E and AMSR2 is obvious
from the bias plot in Fig. 7c. It is also worth mentioning that all
sensors greatly underestimate the snowfall intensities (Fig. 7c).
This large underestimation feature clearly propagates into the
level 3 merged precipitation product, as noticed by previous
studies (Wen et al. 2016; Behrangi et al. 2018; Sadeghi et al.
2019). Similar to RMSE over ocean, no clear difference is
noticed for RMSE among these sensors over land (Fig. 7d).

Intensity analyses based on KuPR generates results that are
very consistent with those based on CPR. Figure 9a shows the

correlation between KuPR and each sensor over ocean. It is
immediately clear that conical scanning radiometers have
higher correlation than cross-track scanning radiometers. In
this case, GMI actually has the largest correlation among the
conical scanning radiometers, which is further evidence that
the smaller correlation from GMI (Fig. 5a) with CPR is due
to the geospatial distribution of the matchup dataset. The
better performance from conical scanning radiometers is also
evident from the scatterplots (Fig. 10) and bias analysis. Es-
pecially, Fig. 11a shows that all conical scanning radiometers
have relatively smaller negative bias than those from cross-
track scanning radiometers. As explained earlier in the CPR
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FIG. 9. (a) Correlation between coincident snowfall rate observations from KuPR and from each sensor over ocean
for March 2014–December 2020, except MHS-N18 ends October 2018. (b) As in (a), but over land.
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FIG. 10. Scatterplots between coincident KuPR and passive
microwave sensors over ocean for March 2014–December 2020,
except MHS-N18 ends October 2018. (a) GMI, (b) AMSR2,
(c) SSMIS-F16, (d) SSMIS-F17, (e) SSMIS-F18, (f) ATMS,
(g) MHS-MA, (h) MHS-MB, (i) MHS-N18, and (j) MHS-N19.
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analysis, the better performance from conical scanning radio-
meters arises because of the usage of the low-frequency
channels.

The analyses against KuPR over land are also very consistent
with the CPR results. Notice that AMSR2 has lower perfor-
mance than other sensors. For example, there are more snow-
fall rates with intensities greater than 0.5 mm h21 from SSMIS-
F16 (Fig. 12c) than that from AMSR2 (Fig. 12b). Also, a much
larger underestimation is evident from AMSR2 in Fig. 11c. Sim-
ilar to analysis based on CPR, the RMSE over both land and
ocean remains comparable among all sensors (Figs. 11b,d).

5. Conclusions and discussions

This study assesses the snowfall retrieval results from 11
sensors in the GPM radiometer constellation, by using Cloud-
Sat CPR and GPMKuPR as references. These 11 radiometers
include six conical scanning radiometers and five cross-track
scanning radiometers. Although the statistical values for both
detection and intensity estimation vary when using CPR and
KuPR as references, major conclusions are highly consistent
over both land and ocean, regardless of the reference. These
major conclusions are as follows:

1) Over ocean, conical scanning radiometers have greater
detection skills and better correlate with the snowfall

rates from references (both KuPR and CPR). The pri-
mary reason why conical scanning sensors perform better
is because they use the low-frequency channels.

2) Over land, sensors with higher-frequency channels (150,
166, and 183 GHz), including GMI, SSMISs, MHSs, and
ATMS, perform noticeably better than AMSR-E and
AMSR2 (whose highest available frequency is ;89 GHz)
in terms of both snowfall detection and snowfall intensity
estimation.

3) Over both land and ocean, large snowfall intensity underes-
timation exists for all 11 sensors, regardless of using either
KuPR or CPR as the reference. This underestimation has
strong effects for the broader end-user community due to its
propagation to level3 merged precipitation products (e.g.,
IMERG; Wen et al. 2016; Behrangi et al. 2018; Sadeghi et al.
2019). The underestimation from the GMI retrieval over
CONUS has also been reported by Mroz et al. (2021).

Note that the conclusions drawn from the comparison in this
study are relevant to the version of the GPROF algorithm we
examined (version 5) and are not indicative of the potential
power of each of these sensors if different retrieval algorithms
(potentially including future GPROF versions) were applied to
them. In fact, other retrieval algorithms (e.g., Meng et al. 2017)
showed that the low-frequency channels from ATMS (23, 31,
and ;50 GHz) and AMSU-A also contain valuable snowfall
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FIG. 11. (a) Normalized biases as a function of the KuPR snowfall intensity over ocean. (b) As in (a), but for normal-
ized RMSE. (c) As in (a), but over land. (d) As in (b), but over land. The legend for all panels is shown in (a).
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retrieval information, which has not been exploited by the cur-
rent version of GPROF algorithm for cross-track scanning ra-
diometers. In addition, comparing the snowfall retrieval results
from GPROF in this study and other previously published
snowfall retrieval studies, it is possible that assigning higher
weights for channels above 89 GHz (e.g., 150, 166, 183.3) may
achieve better estimates (You et al. 2015, 2016; Meng et al.
2017; Rysman et al. 2018; Adhikari et al. 2020; Vahedizade et al.
2021). Finally, GPROF uses snowfall estimates from the ground
radar network over CONUS to build the a priori database over
the snow covered surface, which contributes to the large detec-
tion and intensity estimation uncertainties in the GPROF algo-
rithm. It is shown that using CPR snowfall estimation can
significantly improve the snowfall detection and intensity esti-
mation performance (Mroz et al. 2021).
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